姓 名 | 吴祥 |
性 别 | 男 |
出生年月 | 1991年8月 |
学 位 | 博士研究生 |
职 称 | 讲师 |
E-mail | M_r_wrong@163.com |
个人简介:吴祥,博士,讲师,2018年硕士毕业于安徽大学数学科学学院,2023年博士毕业于山东大学控制理论与控制工程专业获工学博士学位。主要研究方向为分数阶神经网络的稳定性、忆阻神经网络的同步控制。目前已发表SCI论文十篇。
1、 Wu X., Liu S.T., Wang H.Y.. Asymptotic stability and synchronization of fractional delayed memristive neural networks with algebraic constraints [J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 114: 106694.
2、 Wu X., Liu S.T., Wang H.Y., Wang Y.. Stability and pinning synchronization of delayed memristive neural networks with fractional-order and reaction-diffusion terms [J]. ISA Transactions, 2023, 136: 114-125.
3、 Wu X., Liu S.T., Wang H.Y., Pinning synchronization of fractional memristor-based neural networks with neutral delays and reaction-diffusion terms. Communications in Nonlinear Science and Numerical Simulation, 2023, 118: 107039.
4、 Wu X., Liu S.T., Wang H.Y.. Pinning synchronization of stochastic neutral memristive neural networks with reaction-diffusion terms [J]. Neural Networks, 2022, 157: 1-10.
5、 Wu X., Liu S.T., Wang Y.. Stability analysis of Riemann-Liouville fractional-order neural networks with reaction-diffusion terms and mixed time-varying delays[J]. Neurocomputing, 2021, 431: 169-178.
6、 Wu X., Liu S.T., Wang Y., Liu Z.B.. Asymptotical stability of fractional neutral-type delayed neural networks with reaction-diffusion terms[J]. Neurocomputing, 2021, 461: 77-85.
7、 Wu X., Liu S.T., Wang Y., Bi Z.M.. Asymptotic stability of singular delayed reaction-diffusion neural networks [J]. Neural Computing and Applications, 2022, 34: 8587-8595.
8、 Liu S., Wu X., Zhou X.F., Jiang W.: Asymptotical stability of Riemann-Liouville fractional nonlinear systems[J]. Nonlinear Dynamics, 2016, 86: 65-71.
9、 Liu S., Wu X., Zhang Y.J., Yang R.: Asymptotical stability of Riemann-Liouville fractional neutral systems[J]. Applied Mathematics Letters, 2017, 69: 168-173.
10、 Wu X., Liu S., Yang R., Zhang Y.J., Li X.Y.: Global synchronization of fractional complex networks with non-delayed and delayed couplings. Neurocomputing, 2018, 290: 43-49.